• Building 14 (main building of our group)
  • CFD of trailing vortices during fish fin oscillation
  • Comparing in an aneurysm model stereo and tomo PIV, MRI and CFD
  • Continuous oil-water separation using a modified Pitot-tube Jet-Pump
  • DFG 2020 - Because Research Matters
  • DNS of turbulent heptane spray combustion at Re(jet)= 3000
  • Flow in impeller of full-scale water turbine designed for fish passability
  • Gas-liquid transport in a centrifugal pump by CFD
  • Hemodynamic Data Assimilation for PC-MRI and CFD
  • Hemodynamics in a fusiform intracranial aneurysm after flow-diverter treatment
  • Ignition from a hot gas jet using detailed chemistry DNS
  • Impact of surface tension on bubble dynamics
  • LB-DNS of fully-resolved prolate spheroids in wall turbulence
  • LES of expiration flow in real human larynx
  • LIF measurement of oxygen mass transfer in a helix reactor
  • Liquid-Liquid mixing in a Coiled Flow Inverter at Re=200
  • Mass exchange visualized by 2-tracer LIF in a bubbly flow
  • Mixing and vortical structure for multi-phase flows in helical reactors by time-resolved PLIF and PIV
  • Optimization of a Savonius turbine in water
  • Phase distribution in a continuous counter-current extraction process involving a two phase flow
  • PIV around flexible (top) and rigid (bottom) pitching hydrofoils
  • Secondary Dean vortices in helix reactor visualized by LIF
  • Simulations for snow crystals with LBM in 2D
  • Tomo PIV compared to CFD in a helical coil
  • Two-phase flow patterns in a straight or a helical tube
  • Velocity in a STR with organic solvents as function of pressure
  • Water flow below a simulated full-scale floating water wheel

Lehrstuhl Strömungsmechanik & Strömungstechnik

Der Lehrstuhl für Strömungsmechanik und Strömungstechnik (LSS) ist an der Otto-von-Guericke-Universität Magdeburg im Bereich Lehre und Forschung für alle Gebiete der Strömungsmechanik zuständig.

Dies umfasst insbesondere experimentelle und numerische Forschungsprojekte, die folgende Probleme untersuchen:

  • reaktive und mehrphasige Strömungen,
  • Sprays,
  • laminare und turbulente Flammen,
  • Fluidenergie- und Strömungsmaschinen,
  • Mischungs- und Entmischungsprozesse,
  • Optimierung von Strömungsbedingungen,
  • medizinische Strömungen,
  • metallurgische Strömungen,
  • Strömungsinstabilitäten,
  • nicht-newtonsche Strömungen,...

Hierfür stehen hochqualitative Messmethoden und numerische Simulationsprogramme zur Verfügung.

 

Letzte Änderung: 13.10.2020 - Ansprechpartner: Prof. Dr.-Ing. habil. Dominique Thevenin