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a b s t r a c t

An adaptive algorithm suitable for reconstructing a distribution when knowing only a small number of
its moments is presented. This method elaborates on a previous technique presented in John et al.
(2007), but leads to many advantages compared with the original algorithm. The so-called ‘‘finite
moment problem’’ arises in many fields of science, but is particularly important for particulate flows in
chemical engineering. Up to now, there is no well-established algorithm available to solve this problem.
The examples considered in this work come from crystallization processes. For such applications, it is of
crucial interest to reconstruct the particle size distributions (PSD) knowing only a small number of its
moments, obtained mostly from numerical simulations or from advanced experiments, but without any
a priori knowledge concerning the shape of this PSD. This was already possible in many cases with the
original algorithm of John et al. (2007), but complex shapes could not be identified appropriately. The
key of the advanced algorithm is the adaptive criterion for positioning dynamically the nodes in an
appropriate manner. It turns out that the adaptive algorithm shows considerable improvements in the
reconstruction of distributions with a quickly changing curvature or for non-smooth distributions. Since
such configurations are quite often found in practice, the new algorithm is more widely applicable
compared with the original method.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of reconstructing a scalar-valued function f(t, x)
from a finite number of its moments, the so-called ‘‘finite moment
problem’’, arises in many scientific and technical applications as
described in John et al. (2007). This situation has not changed; the
interested reader is therefore referred to the literature cited in
John et al. (2007) to find application examples for image
processing, magnetic imaging, molecular physics or chemical
engineering.

The i-th moment miðtÞ of the function f ðt; xÞ : ½0; tfinalÞ $
½0;1Þ-R depending on time and on a one-dimensional, so-
called internal coordinate x (typically, a length scale) is classically
defined by

miðtÞ ¼
Z 1

0
xif ðt; xÞdx; i¼ 0;1;2; . . . : ð1Þ

Since a majority of practical applications still only considers
mono-variate problems at present, the developed formulation

will be restricted to the case of a single internal coordinate (x).
Bivariate populations will be the subject of future work.

From the mathematical point of view, the finite moment
problem is a severely ill-posed problem. It has been studied in the
mathematical literature almost exclusively from the theoretical
point of view (see again John et al., 2007 for a review of the most
important results). In principle, there is no unique solution for this
problem and all moments up to infinity should be known to
reconstruct the function. The issue of isomomental distributions
(i.e., distributions having the same moments while being
different) has been considered extensively for instance in Wright
(2000) and White (1990).

Nevertheless, there are usually constraints on the domain and
on the range of f(t, x) due to the underlying physics of the
application. A typical example is the reconstruction of particle
size distributions (PSD) when considering particulate processes
like crystallization, precipitation, etc. The particle size (x coordi-
nate) is always positive, and there is always a maximal possible
size, at most the reactor size, usually even much smaller. Thus, the
domain spanned in the x-direction by f(t, x) is only an interval
within the positive real numbers. Furthermore, a PSD should have
only non-negative values, hence the range of f(t, x) is only a subset
of the non-negative real numbers. Even if these limitations sound
trivial from an engineering point of view, they are indeed
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sufficient from a mathematical point of view to simplify
tremendously the complexity of the finite moment problem as
recognized also for instance by Strumendo and Arastoopour
(2008). The uniqueness of the reconstruction in the case all
moments are known is discussed in Appendix A. However,
different distributions having the same first moments are still
possible.

Usually, the moments mi associated with the distribution are
determined using numerical simulations or advanced experi-
mental techniques. Note, however, that corresponding measure-
ments are extremely difficult, in particular if a high accuracy is
required, as documented for example in Allen (1997). As a
consequence, only very few moments are usually determined
experimentally, mostly in an indirect manner. In practice, only the
mean particle size and the particle number concentration can be
measured with a relatively high accuracy, even if some set-ups
deliver an estimation of the complete PSD (e.g., Ba"dyga and
Orciuch, 2001; Marchisio et al., 2002). This demonstrates the
importance of a robust reconstruction method that is able to
deliver a good approximation of the underlying distribution with
only limited information input.

The situation is not quite as difficult when the moments are
determined from numerical simulations. Indeed, very popular
numerical techniques like method of moments (MOM), Quad-
rature method of moments (QMOM) and direct quadrature
method of moments (DQMOM; see Marchisio and Fox, 2005 for
more information on these techniques) directly deliver the
moment values. In principle, it is possible to consider as many
moments as the user wishes. But the cost of the numerical
simulation of course increases rapidly when considering more
moments. Furthermore, the mathematical system becomes very
badly conditioned for higher-order moments. As a consequence,
results found in recent publications deliver a larger but still
limited number of moments. For instance, two (Schwarzer et al.,
2006), three (Diemer and Olson, 2002), four (Wei et al., 2001), five
(Öncül et al., 2009) or even for test purposes up to eight moments
(Fan et al., 2004) have been considered for coupled simulations
involving particles in a turbulent flow.

For practical engineering purposes, the usual method for
reconstructing a function from a small number of its moments
is based on an a priori knowledge of the solution. Using this
information (e.g., a Gauss shape, or a Poisson distribution), a
strong ansatz is made for the shape of f(t, x) and the known
moments are just used to fit parameters in this ansatz. This
fitting is a fast and very easy computation. Nevertheless, this
approach is restricted to functions with simple shapes. Even more
troublesome is the fact that one needs in principle to know the
solution before one can get it back, which is obviously not very
satisfactory in general (see John et al., 2007 for a more detailed
discussion of the advantages and drawbacks of this approach).
A direct reconstruction is only possible if the number of known
moments is equal to the number of parameters in the ansatz.
As an additional difficulty, the shape of the function needed to
reconstruct is often time-dependent in practical applications,
f(t, x). It is then not clear if the presumed shape is suitable for all
times.

Further possible techniques to solve the finite moment
problem have been already reviewed in John et al. (2007). For
the sake of brevity, the corresponding analysis is not repeated
here, so that only new approaches are discussed in what follows.
One notable exception concerns the maximum entropy method
(MEM). Before introducing the spline-based reconstruction in
John et al. (2007), MEM was clearly the best possible method for
reconstructing the PSD and it is still an interesting alternative
today, so that it deserves a renewed discussion. Recent publica-
tions using MEM for reconstructing a distribution can be found in

particular in Abramov (2007) and Bandyopadhyay et al. (2005). In
order to compute a reconstruction, MEM starts from a so-called
prior distribution chosen by the user and applies a finite number
of explicit constraints. As a consequence, the shape of the
reconstruction is not completely prescribed, but the results still
depend on the choice of the prior distribution (sometimes also
called sample distribution). Theoretically, as the number of
available moments grows, the results of MEM should become
more and more independent from the prior distribution. How-
ever, improper priors still influence strongly the results of MEM,
as shown for example in Kass and Wasserman (1996) and Scales
and Tenorio (2001). Furthermore, only a limited number of
moments are known in practice, leading to an even larger
influence of the sample distribution on the final result.

Improved reconstruction methods derived from MEM can be
found, in particular the minimum relative entropy (MRE) method
(see for example Woodbury, 2004). The MRE is superior to MEM
in several aspects. However, the results obtained with MRE still
depend on the choice of a prior, just like MEM. It has been
furthermore shown that, if the prior is chosen to be a smooth
function (which is almost always done in practice), the results of
MRE or MEM will be necessarily a smooth function too (Wood-
bury, 2004). Therefore, it is extremely difficult to reconstruct non-
smooth distributions with this technique.

To finally conclude on entropy methods, they are indeed quite
attractive and a considerable amount of information can be found
in the literature. They request nevertheless either a good a priori
knowledge of the distribution that must be reconstructed
(approximate shape, smooth or non-smooth evolution) and/or a
large number of moments. Our objective in the present work is
somewhat different: to propose a robust method able to deliver
an acceptable reconstruction independently from any initial guess
and with only a limited number of known moments.

After the publication of the survey in John et al. (2007), another
reconstruction algorithm was introduced in Alopaeus et al.
(2008). Similar to our spline-based approach, this method does
not constrain directly the shape of the distribution to be
reconstructed. The technique described in Alopaeus et al. (2008)
assumes that good estimates of the function to reconstruct are
known at some isolated points. A piecewise linear interpolation
between these points gives an approximation of the function, the
so-called raw solution. The possible negative oscillations of this
raw solution are simply cut off, which simultaneously gives an
assumed range for the raw solution. In this way, a first
approximation of the solution is obtained, which might lead to
moments completely different from the known values. The final
step of the reconstruction method consists in a minimization of
these differences in a least squares sense by a proper scaling of
the abscissas and ordinates of the initial approximation. The
method introduced in Alopaeus et al. (2008) is in principle
attractive for a reconstruction process starting from a computer
simulation relying by itself on a moment-based method. It cannot
be applied directly to other cases such as to a reconstruction
based on experimentally determined values.

Strumendo and Arastoopour (2008) have proposed the alter-
native Finite size domain Complete set of trial functions Method
of Moments (FCMOM). As in the present formulation, this method
uses explicitly the fact that the x-domain on which the
distribution must be reconstructed is bounded. Up to now,
FCMOM has been successfully employed to describe the evolution
of particulate systems, but has not been used for coupled
simulations involving non-homogeneous external coordinates
such as particles in a complex turbulent flow. This is clearly our
own target application. Furthermore, the examples published up
to now with FCMOM employ a large number of moments
(typically 10). Therefore, the purpose of our reconstruction
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technique appears to be quite different and FCMOM will not be
discussed further here.

In John et al. (2007), a reconstruction approach was presented,
which does not require any information on the shape to be
reconstructed nor on the spatial extent (x coordinate) of the
function f(t, x). The unknown function is represented by a spline
defined on an underlying grid. An arbitrary number of moments
can be used for the reconstruction, and the real x-domain is
identified iteratively during the reconstruction.

The standard approach presented in John et al. (2007) was very
successful for many different distributions, but suffered from
major drawbacks:

1. it cannot really reconstruct non-smooth distributions;
2. even smooth functions are not always well reconstructed, in

particular when they involve several peaks (lack of generality).

As a whole, this means that the original procedure is not general
enough. While the first and third PSD examples are well
reconstructed (see Figs. 8 and 10 in John et al., 2007), the second
and the fourth ones are not really acceptable (see Figs. 9 and 11).
This is not a surprise for the fourth example (non-smooth
distribution), but even the second, relatively simple example
(smooth distribution involving two peaks) could not be recon-
structed very properly. An in-depth analysis of the spline-based
reconstruction process has shown that a tremendous progress
could be obtained by placing the underlying grid points in an
optimal manner. Working with an equidistant grid, such as in the
original formulation, is not a good idea. Exhaustive tests using a
manual positioning of the nodes have been carried out and the
idea for the automatic algorithm emerged from these ‘‘trial and
error’’ tests. Thus, the present paper will introduce a major
improvement: the reconstruction will employ a non-equidistant
grid, dynamically adapted during the reconstruction process. The
main issue consists in finding appropriate criteria for an optimal
distribution of the grid points. This issue will be addressed and
numerical results will be presented, showing the large superiority
of the improved method compared with the original one,
particularly for non-smooth or multi-peak PSDs.

2. The adaptive spline-based reconstruction algorithm

The original spline-based reconstruction algorithm has been
presented in detail in John et al. (2007). In principle, this
presentation was already valid for non-equidistant grids. For this
reason, we will limit ourselves here to the description of the most
important features of this algorithm and to its extension
concerning the adaptive distribution of the nodes. The chosen
examples still come from crystallization reactors, since determin-
ing the correct PSD is a particularly important issue in this case as
noted for example in Mersmann (2001).

The reconstruction of particle size distributions as found in
process engineering is our major purpose, in particular for non-
homogeneous conditions in space. Thus, the usual constraints on
the domain (internal coordinate x) and the range of the function
f(t, x) to be reconstructed apply as described in the introduction:
the particle size is positive and bounded; the PSD f is non-negative
everywhere.

Let the first L moments of f(t, x) be given at some time. An
initial interval [a, b], which should contain the real range of f(t, x),
is divided into n sub-intervals [xi, xi + 1], i=1,y,n, with
a¼ x1ox2o & & &oxnþ1 ¼ b. As in John et al. (2007), splines
(piecewise polynomials with compatibility conditions at the
nodes xi, i=2,y,n) of order 3 are used in the reconstruction. For
such a cubic spline, there are in each interval 4 unknown

coefficients of the cubic polynomial leading altogether to 4n
unknowns. From the boundary conditions at x1 and xn + 1 and the
compatibility conditions at xi, i=2,y,n, one obtains 3n + 3
equations. The missing L=n(3 equations come from the known
moments of f(t, x). Altogether, one has to solve in the spline-based
reconstruction with cubic splines linear systems of equations of
size 4n$4n.

The spline-based reconstruction algorithm from John et al.
(2007) is an iterative process. Given a mesh x1ox2o & & &oxnþ1,
one iteration looks as follows:

1. Solve the resulting linear system of equations.
2. Check if the interval [x1, xn + 1] for computing the reconstruction

can be reduced: This step is crucial for finding a good interval,
which contains the real domain of f(t, x). In this step, the
absolute values of the current reconstruction in the sub-
intervals at the boundaries [x1, x2], [xn, xn+ 1], are compared
with the maximal value of the current reconstruction. If, for
instance, the values in [x1, x2] are negligibly small compared
with the maximal value, the new left boundary for the
reconstruction is set to be x1 :¼(x1 + x2)/2. The same procedure
is performed for the right boundary. If the interval has
changed, the nodes are redistributed in an equidistant manner.
Go to step 1.

3. Regularize the solution of the linear system of equations: If there
is no recommendation to reduce the interval in step 2, but the
reconstruction has local values which are exceedingly nega-
tive, the solution of the linear system will be regularized. This
is done by removing subsequently the smallest singular values
of the system matrix. After each such removal, it is checked
again if the interval for the reconstruction can be reduced, i.e.,
step 2 is performed.

The algorithm stops if all values in the nodes and in the midpoints
of the sub-intervals are almost non-negative and if no reduction
of the interval for the reconstruction is recommended.

The regularization of the linear system removes first the
smoothness of the second derivative in the nodes. Thus, the
recommended reconstruction will be often not twice differenti-
able (the second order derivative of the PSD is a piecewise linear
but discontinuous function). This is not an issue for engineering
purposes.

The procedure for an adaptive redistribution of the nodes needs
some starting guess about the shape of the expected solution.
This is a classical requirement for adaptive methods, e.g., for the
solution of partial differential equations. For this reason, the
adaptive procedure starts only after the spline-based reconstruc-
tion has finished computing a first approximation of the solution
on an equidistant grid using the original algorithm of John et al.
(2007), which does not require any starting guess. The newly
developed adaptive algorithm consists of the following steps:

1. Compute the second-order derivative of the current approxima-
tion: The key observation for choosing the initial nodes of the
adaptive grid is that, if f(t, x) changes the sign of its curvature
quickly, as at narrow peaks, then it is not possible to represent
this region with a cubic function in one interval. This is
because a cubic function can lead only to one single change of
the sign of the curvature in one interval. In fact, the original
algorithm always leads to very bad results if more than one
change of the sign of the curvature of f(t, x) occurs in one sub-
interval (see for instance later Fig. 7). For this reason, we
decided to place nodes at all points where the second-order
derivative of the current reconstruction either changes its sign
from a positive to a negative value, or vice versa.
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2. Compute the first-order derivative of the current approximation:
Nodes are also placed in those sub-regions where the absolute
value of the first-order derivative is large, i.e., where the
solution is steep. This idea resembles the well-known gradient
indicator in adaptive methods for partial differential equations.
For choosing the next nodes of the adaptive grid, the first-
order derivatives of the spline at the nodes of the current grid
are thus evaluated. The obtained values are ordered with
respect to their size (absolute value) and then grouped into
so-called windows. The default number of windows is set
to be equal to the number of nodes that need to be chosen.
In the first window all the points with the largest derivative
values are gathered. All node points in a window are
considered to be of the same importance. Starting with the
first window, the algorithm picks up the points from left to
right, in the increasing x direction and accepts within the new
list of nodes only those that have a minimal prescribed
distance from the nearest node. Excessive clustering of nodes
is avoided in this way. This procedure is applied until the
appropriate total number of nodes has been obtained, which is
given by the order of the spline and the number of known
moments.

3. Enlarge the domain: Numerical tests have shown that it is
useful to slightly enlarge at first the range identified by the
original, equidistant algorithm of John et al. (2007) and to
compute iteratively a new domain with the adaptively
distributed nodes. For this purpose, the coordinate of the node
xn + 1 is multiplied in practice by 1.2 (20% increase).

4. Go to step 1 of the original algorithm using the new
distribution of the nodes.

Now, the original algorithm of John et al. (2007) is performed
again. After this, a new distribution of the nodes is computed with
the adaptive procedure, and so on. For all the cases presented in
this paper, three node redistributions have been required at most
before finding the final solution.

An approximation f(k(1) is considered to be the final
approximation of f(t, x) if:

) the error associated with all moments is sufficiently small

max
i ¼ 0;...;L(1

jrelative error in ith moment of f ðk(1Þjotol;

) and the approximation on the next adaptive grid leads to a
growing mean error

XL(1

i ¼ 0

jrelative error in ith moment of f ðk(1Þj

r
XL(1

i ¼ 0

jrelative error in ith moment of f ðkÞj:

The window approach described in step 2 does not select the
nodes strictly with respect to the absolute value of their first-
order derivative. Instead, the selection occurs within the windows
from left to right (increasing x-direction). In our numerous tests,
this approach has been found to lead to more accurate results,
compared with a selection based only on the magnitude of the
first-order derivative. This is due to the fact that the reconstructed
function, being bounded on the left-hand boundary, usually tends
to be slightly shifted to the right (larger x-values) compared with
reality. The employed windows favor the left-hand side (lower
x-value) and thus counterbalance this issue to some extent.

The workflow of the adaptive spline-based reconstruction
algorithm is presented in Fig. 1.

3. Results and discussion

Using equidistant grids, the original algorithm has already
shown excellent results for smooth distributions with a slowly
changing sign of the PSD curvature (John et al., 2007). Therefore,
we concentrate here on the cases from John et al., 2007 where the
reconstruction was not really successful (second and fourth
examples, called Examples 2.2 and 2.4 in the original paper).

The engineering background and the data (values of all
moments) for all these test cases can be found in John et al.
(2007). Similar to John et al. (2007), the adaptive algorithm has
been implemented as a MATLAB script. The number of iterations
needed to get the final distribution depends of course on the
example considered and on the number of known moments.
However, the computation time was less than 120 s on a standard
PC for all simulations carried out up to now, including a graphical
representation of all intermediate solutions. If necessary, this
duration could be tremendously reduced by suppressing graphical
outputs, writing a dedicated code instead of using MATLAB,
optimizing further the algorithm and using a faster computer.
This would finally allow the use of this approach for process
control which is a major issue of chemical engineering (Rodrigo
et al., 2004; Sundmacher et al., 2005; Agachi et al., 2007).

3.1. Multi-peak, smooth distributions

Figs. 2–6 present a comparison of the results obtained with the
original (equidistant) and the adaptive algorithm for the smooth
distribution with two peaks (Example 2.2 of John et al., 2007), one
of them being considerably narrower than the other one. The
reference distribution has been obtained numerically by solving
directly the full Population Balance Equations. Such a distribution
with two peaks is typical of crystallization applications, for which
seeds are employed initially, so that finally both seed crystals and
newly nucleated crystals will be found at different sizes. Our
group is particularly interested in enantiomer crystallization.
More information on that topic can be found for example in
Qamar et al. (2006), or for a more general picture in Lorenz et al.
(2006).

As already shown in John et al. (2007), the original approach is
not able to resolve the changing sign of the curvature for the first,
narrow peak and thus leads globally to a poor result. The adaptive
algorithm is in most cases able to find suitable positions for the
nodes, leading to an excellent reconstruction of the reference
distribution.

As explained in the introduction, only a limited number of
moments are usually known. It is therefore important to check
how many moments are really needed for a good reconstruction
of the PSD. For this purpose, a systematic study showing the
results for three up to seven moments is presented.

Visually, results obtained with four to seven moments
(documented respectively in Figs. 3–6) can be considered as good
to very good (see for instance Fig. 6). On the other hand, the
reconstruction using just three moments does not resolve the
peaks with high precision. This is due to the lack of information
when using such a small number of moments.

A quantitative evaluation of the reconstruction quality is
presented in Table 1 (standard algorithm) and Table 2 (adaptive
algorithm). Different methods and parameters have been used in
order to quantify precisely the quality of the reconstruction. First,
the norm of the global error is defined as

Norm¼
R xmax

0 jfreconstðxÞ(fref ðxÞjdx
R xmax

0 jfref ðxÞjdx
:
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The correlation coefficient (Corr) between the reconstructed
and the reference curve is furthermore computed using the built-
in MATLAB function corrcoef.

For many practical purposes, the position and the height of the
peaks observed in the PSD are essential pieces of information.
Consequently, measuring the accuracy of the procedure for both
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Fig. 1. Workflow of the adaptive spline-based reconstruction algorithm.
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quantities is also interesting, even if they do not describe the
quality of the whole reconstruction. The corresponding errors are
defined in the following equations:
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Fig. 2. Reconstruction of a two-peak distribution, comparison of equidistant and
adaptive algorithm using three known moments.
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Fig. 3. Reconstruction of a two-peak distribution, comparison of equidistant and
adaptive algorithm using four known moments.
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Fig. 4. Reconstruction of a two-peak distribution, comparison of equidistant and
adaptive algorithm using five known moments.
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Fig. 5. Reconstruction of a two-peak distribution, comparison of equidistant and
adaptive algorithm using six known moments.
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Fig. 6. Reconstruction of a two-peak distribution, comparison of equidistant and
adaptive algorithm using seven known moments.

Table 1
Quantitative evaluation of the smooth distribution reconstruction using the
standard algorithm.

Case Norm (%) Corr (%) Negat (%) DHrel (%) DLrel (%)

3 mom 95.8 17.8 0 Left peak 43.8 11.6
Right peak 38.2 21.2

4 mom 98.8 9.3 0 Left peak 41.3 14.8
Right peak 64.3 24.8

5 mom 107.6 9.5 0.14 Left peak 42.1 14.8
Right peak 60.4 29.4

6 mom 104.9 12.1 0 Left peak 43.4 14.2
Right peak 62.3 31.4

7 mom 102.5 13.2 0 Left peak 43.5 14.0
Right peak 58.1 27.8
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Relative height difference ðDHrelÞ:

DHrel ¼
jfreconstðxpeak;reconstÞ(fref ðxpeak;ref Þj

jfref ðxpeak;ref Þj
:

Relative position difference ðDLrelÞ:

DLrel ¼
jxpeak;reconst(xpeak;ref j

xmax
:

The relative negativity

Negat¼
minðfreconstÞ
maxðfreconstÞ

has also been quantified, since in some cases slightly negative
values allow to obtain much better reconstructions. It is
interesting to know how much this will affect the results.

It can be seen clearly in Table 1 that the original algorithm of
John et al. (2007) using an equidistant grid cannot produce the
right solution. Even when considering more and more moments,
the reconstruction quality does not increase measurably.

On the other hand, the adaptive algorithm (Table 2) fully
exploits the supplementary information. With only three mo-
ments, the reconstruction is inaccurate. But, for four and more
moments, the reconstruction quality is good up to excellent.
Using more moments, the reconstruction quality increases
further, but only slightly since the solution obtained with four
moments is already good.

The moments obtained with the equidistant grid and the
adaptive algorithm are compared with the moments of the initial
test distribution in Tables 3 and 4. Reconstructions computed on
the adaptive grids lead to very accurate moments, with relative
errors lying below 1% for all moments considered. In contrast, the
equidistant grid yields distributions with very small errors in the
first two moments but sometimes large errors for higher
moments (up to 15%).

3.2. Non-smooth distributions

The second example considers a non-smooth distribution with
two peaks (John et al., 2007, Example 2.4). The first peak is
extremely narrow and drops suddenly from its maximal value to
zero. This distribution corresponds again to a preferential crystal-
lization process, described in more details in Elsner et al. (2005).

The original algorithm on an equidistant grid completely fails
for this application, as already shown in John et al. (2007). On the
other hand, Fig. 7 demonstrates that the adaptive algorithm is
able to give a rather good reconstruction for this very difficult
case. The height and the position of both peaks are reproduced
with good precision and even the steep gradient at the end of the
first peak is relatively well resolved. The price to pay for this good
resolution is a slightly negative value of the PSD for a short range
behind the sharp peak. Since splines are intrinsically smooth
functions, it cannot be expected that they will allow directly an
exact description of a non-smooth PSD. This drawback is however
in practice of minor importance compared with a correct
estimation of the peak magnitudes and positions.

The quality of the reconstruction is quantified in Table 5. The
comparison shows again the clear improvement of all indicators
when using the adaptive algorithm. This shows that the adaptive
spline-based reconstruction algorithm described in Section 2 is
also able to automatically take into account a local non-smooth
behavior of the distribution to reconstruct.

A quantitative comparison of the moments obtained with the
reconstruction algorithms is shown for the non-smooth distribu-
tion in Table 6. The relative errors are below 1% for all moments

Table 2
Quantitative evaluation of the smooth distribution reconstruction using the
adaptive algorithm.

Case Norm (%) Corr (%) Negat (%) DHrel (%) DLrel (%)

3 mom 107.1 5.0 0 Left peak 27.6 9.9
Right peak 67.3 19.0

4 mom 19.0 96.9 0.52 Left peak 5.3 2.2
Right peak 21.9 1.4

5 mom 17.2 97.8 0.73 Left peak 12.9 1.8
Right peak 11.2 1.8

6 mom 16.2 96.5 0 Left peak 5.6 1.0
Right peak 4.8 1.8

7 mom 12.8 97.2 0 Left peak 1.3 1.3
Right peak 3.9 0.8

Table 3
Comparison of the moments of the equidistant grid reconstruction with the initial
test distribution (two-peak smooth distribution).

Moments Rel. error (%)

3 moments 4 moments 5 moments 6 moments 7 moments

m0 4.66e ( 6 3.76e ( 6 2.78e ( 6 1.69e ( 6 1.44e ( 6
m1 1.18e ( 2 1.25e ( 2 9.46e ( 3 7.89e ( 3 7.42e ( 3
m2 1.02e + 1 1.16e + 1 8.47 7.23 7.15
m3 1.18e + 1 9.37 6.70 7.34
m4 3.00 9.42e ( 1 1.48
m5 1.21e + 1 6.90
m6 1.50e + 1

Table 4
Comparison of the moments of the adaptive algorithm reconstruction with the
initial test distribution (two-peak smooth distribution).

Moments Rel. error (%)

3 moments 4 moments 5 moments 6 moments 7 moments

m0 8.06e ( 2 6.68e ( 1 2.84e ( 1 3.71e ( 1 4.22e ( 1
m1 2.66e ( 2 4.98e ( 1 1.57e ( 1 2.52e ( 1 2.45e ( 1
m2 1.80e ( 1 3.52e ( 1 1.42e ( 1 1.73e ( 1 1.10e ( 1
m3 4.15e ( 1 2.41e ( 1 2.04e ( 1 1.13e ( 1
m4 4.22e ( 1 3.14e ( 1 1.95e ( 1
m5 5.63e ( 1 3.18e ( 1
m6 4.71e ( 1
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Fig. 7. Reconstruction of a two-peak distribution with steep gradient using five
moments, comparison of equidistant and adaptive algorithm.
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when using an adaptive grid, leading to a much better
approximation compared with the equidistant grid algorithm.

3.3. Robustness of the reconstruction

As already explained in the introduction, the developed
reconstruction process must be as robust as possible. When
considering experimental measurements, the uncertainty is not
negligible. It must be checked that the predicted distribution is
not impacted too strongly by such inaccurate inputs.

Even when considering results of numerical simulations, the
shape and extent of the distribution are usually very poorly
known at first. Therefore, the reconstruction must be able to work
efficiently with a very low level of starting information.

Both issues have been checked separately, first by modifying
the input moments by a certain percentage, thus mimicking a
possible (measurement) error. In a second step, the size of the
(guessed) initial domain has been varied over an order of
magnitude, in order to quantify its impact.

The effect of an error in the moments has been first investi-
gated. Systematic as well as random errors have been introduced
in the original moments and the final distribution obtained can be
seen in Figs. 8 and 9, respectively.

When considering systematic errors, all moments are modified
by multiplying or dividing them with the same factor, e.g. 1.3 for
30% relative error. As demonstrated in Fig. 8, such systematic
errors fortunately do not have a very large impact on the
reconstruction. Even when a large relative error of 30% is applied,
the shape of the distribution remains very similar and the position
of the peaks is still very well predicted (Table 7). This is
undoubtedly related to the fact that the coupling between
function and moments (Eq. (1)) is linear.

Random errors have a larger impact on the shape of the
distribution (Fig. 9). For random errors, each moment is again
multiplied or divided by the same factor (e.g. 1.1 for 10% relative
error), but a random process is called to decide for each moment
individually if a multiplication or a division should take place. As a
consequence, some moments will be increased while some others
are reduced in a random manner.

Here also, the adaptive algorithm has been able to deliver
a reconstruction of acceptable quality (Table 8). In fact, the

algorithm works indeed very well and delivers the correct
moments with a very high accuracy. The observed discrepancies
are directly connected to the random modification of the
moments. Even a small change in the moments leads to a
considerably different distribution. This illustrates the need for an
accurate determination of the moments. The needed level of
accuracy certainly constitutes a real challenge, in particular for
experimental measurements.

Table 5
Quantitative evaluation of the non-smooth distribution reconstruction using five
moments.

Case Norm (%) Corr (%) Negat (%) DHrel (%) DLrel (%)

Standard 135.3 19.1 9.5 Left peak 69.4 16.9
Right peak 35.4 31.5

Adaptive 35.7 80.2 5.3 Left peak 11.0 0.2
Right peak 16.8 2.9

Table 6
Comparison of the moments of the reconstruction based on the equidistant grid
and adaptive algorithms with the initial test distribution (non-smooth distribu-
tion).

Moments Rel. error (%) equidistant grid Rel. error (%) adaptive algorithm

m0 3.14e ( 6 1.21e ( 1
m1 1.00e ( 2 4.11e ( 1
m2 8.21 4.20e ( 1
m3 7.04 1.42e ( 1
m4 9.07e ( 1 2.73e ( 1
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Fig. 8. Reconstruction of a two-peak distribution using four moments with
systematic error.
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Fig. 9. Reconstruction of a two-peak distribution using four moments with
random error.

Table 7
Quantitative evaluation of the reconstruction using four moments with systematic
error.

Case Norm (%) Corr (%) Negat (%) DHrel (%) DLrel (%)

5% syst. error 21.0 95.4 0 Left peak 15.3 0.2
Right peak 4.8 2.8

10% syst. error 23.4 95.3 0 Left peak 19.8 0.2
Right peak 9.8 2.8

30% syst. error 38.2 95.3 0 Left peak 37.7 0.2
Right peak 29.8 2.8
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In a second step, the size of the initial domain has been slowly
increased by more than an order of magnitude considering again
the smooth two-peak distribution. The really useful domain for
this distribution extends up to 5 mm. The adaptive reconstruction
process has been carried out with an initial guess of 5, 6, 8, 10, 12,
30, 50, and 90 mm. The final domain identified by the procedure
and the resulting global errors are shown in Table 9. These tests
have shown that, as long as a few points are present during the
first iteration within the real domain of interest, the adaptive
procedure will be able to converge to the right region. The best
result is obtained when choosing as a first guess twice the size of
the real domain of interest.

Altogether, the reconstructions obtained with the adaptive
algorithm are of a much better quality and considerably more
robust than the original results using an equidistant grid for all
configurations tested up to now, without any exception.

4. Conclusions and outlook

This paper presents a considerable improvement of an
algorithm suitable for reconstructing a PSD knowing only a small
number of its moments by using splines. The original algorithm
from John et al. (2007) failed to reconstruct distributions with a
quickly changing curvature or with local non-smooth behavior. To
overcome these problems, an adaptive grid has been introduced,
allowing a much more appropriate resolution of critical regions,
through an iterative analysis of the first and second-order
derivatives of the intermediate solutions. It has been demon-
strated that the adaptive algorithm leads to reconstructions with
a much better accuracy than the equidistant grid approach. The
needed computing time is still very small (expressed in seconds,
without optimizing the process), so that it would be probably
possible to use this algorithm for process control.

The numerous tests carried out during the development of this
procedure reveal following features:

) For a really accurate reconstruction of a two-peak, smooth
distribution, four moments should be known. A reconstruction
with only three moments is already possible, but will lead only
to a semi-quantitative description.
) It is not necessary to know the domain of the function to

reconstruct with a high precision. A first guess with only the
right order of magnitude (i.e., knowing only the typical size of
the largest particles) is fully sufficient to start the process. A
good initial guess is twice the real domain of interest, if known
in advance.
) When more moments are known, the accuracy of the

reconstruction increases as expected.
) To reconstruct accurately a non-smooth distribution, more

moments are needed than for a smooth distribution. As a
rough recommendation, one moment more should be known
for each non-smooth event compared with a smooth distribu-
tion with the same number of peaks.
) The reconstruction process is robust enough to tolerate some

error in the moment values. Nevertheless, these errors must of
course be minimized, since a random error of 10% might
already lead in reality to a considerably different distribution.

Future work will consider the extension of the spline-based
reconstruction algorithm to bivariate distributions.

The MATLAB script for the original algorithm is freely available
under the Web page http://www.uni-magdeburg.de/isut/LSS,
Menu ‘‘Downloads’’. The script of the new, adaptive algorithm
will become also freely available under the same address,
simultaneously with the release of the present publication.
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edged. The Ph.D. of Luis G. Medeiros de Souza is financially
supported by the International Max Planck Research School for
Analysis, Design and Optimization in Chemical and Biochemical
Process Engineering in Magdeburg.

Appendix A. On the unique reconstruction of a PSD if all
moments are known

This appendix shows that in the framework considered in this
paper, a function can be uniquely reconstructed if all its moments are
known. This is in general not possible without appropriate conditions,
see the examples by White (1990) and McGraw et al. (1998).

As emphasized in the introduction, a PSD f(x) is defined in practice
over a bounded interval [a,b], 0oaobo1. We assume that
f AL2ða; bÞ, where L2(a, b) is the Lebesgue space of square-integrable
functions on (a, b). This assumption is realistic, e.g. sufficient
conditions for f AL2ða; bÞ are that f(x) is bounded in (a, b) or that
f(x) is continuous in [a, b]. The result of the spline-based reconstruc-
tion algorithm is by construction a continuous function in [a,b].

Let us assume that there are different distributions
f ; gAL2ða; bÞ such that

Z b

a
xkf ðxÞdx¼

Z b

a
xkgðxÞdx; k¼ 0;1;2; . . . : ð2Þ

Table 8
Quantitative evaluation of the reconstruction using four moments with random
error.

Case Norm
(%)

Corr
(%)

Negat
(%)

DHrel

(%)
DLrel

(%)

1% random error 9.6 99.3 1.69 Left peak 10.9 0.2
Right
peak

7.6 1.6

5% random error 41.3 87.4 8.36 Left peak 34.3 2.7
Right
peak

8.1 9.8

10% random error 56.6 85.3 19.87 Left peak 26.8 1.7
Right
peak

3.4 12.2

Table 9
Robustness test regarding the choice of the initial interval.

Initial guess (mm) Final domain (mm) Norm error (%) Corr (%)

5 4.643 28.3 94.1
6 5.765 28.4 90.0
8 5.238 27.2 88.3
10 5.645 19.0 96.9
12 5.424 21.1 93.1
30 4.805 30.5 91.4
50 5.954 42.1 79.0
90 9.047 38.8 87.2
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It is well known that the system of Legendre polynomials
fP0ðxÞ; P1ðxÞ; P2ðxÞ; . . .g is an orthogonal basis of L2(a,b), i.e. it holds

Z b

a
PiðxÞPjðxÞdx¼

Ai40; i¼ j;

0 else:

!
ð3Þ

Since the Legendre polynomials form a basis, there are unique
representations of the form

f ðxÞ ¼
X1

i ¼ 0

aiPiðxÞ; gðxÞ ¼
X1

i ¼ 0

biPiðxÞ; ai;biAR:

In addition, the monomial of order k can be represented as a linear
combination of the Legendre polynomials P0, y, Pk,

xk ¼
Xk

i ¼ 0

giPiðxÞ; giAR with gka0:

Let Eq. (2) hold for k=0, i.e.

0¼
Z b

a
ðf ðxÞ(gðxÞÞdx¼

Z b

a

X1

i ¼ 0

ðai(biÞPiðxÞdx¼
X1

i ¼ 0

ðai(biÞ
Z b

a
PiðxÞdx:

Since P0ðxÞ ¼ CAR, it holds with Eq. (3)

Z b

a
PiðxÞdx¼

A040; i¼ 0;

0 else:

!

Hence, 0¼ ða0(b0ÞA0 from what a0 ¼ b0 can be deduced.
Now, the argument continues by induction. Let ai ¼ bi for i=0,

1,y,k(1. Using this condition, one obtains

0¼
Z b

a
xkðf ðxÞ(gðxÞÞdx

¼
Z b

a

Xk

j ¼ 0

gjPjðxÞ

0

@

1

A
X1

i ¼ 0

ðai(biÞPiðxÞ

 !

dx

¼
Z b

a

Xk

j ¼ 0

gjPjðxÞ

0

@

1

A
X1

i ¼ k

ðai(biÞPiðxÞ

 !

dx:

Multiplication of the sums gives terms of the form
Z b

a
PjðxÞPiðxÞdx; j¼ 0; . . . k and i¼ k; kþ1; . . . :

According to Eq. (3), these integrals are only non-zero if i = j(=k).
Hence, it follows

0¼
Z b

a
gkPkðxÞðak(bkÞPkðxÞdx¼ gkðak(bkÞAk:

Since Ak40 and gka0, one obtains ak ¼ bk. Hence ai ¼ bi,
i=0,1,2,y, and the basis property of the Legendre polynomials
finally yields f(x)=g(x).

The examples on non-unique reconstructions from White
(1990) and McGraw et al. (1998) are defined on infinite intervals I.
In this case, polynomials do not belong to L2(I) and consequently
there is no polynomial basis of L2(I).
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